Validation of Improved TAMANN Neural Network for Operational Satellite-Derived Rainfall Estimation in Africa
Author:
Affiliation:
1. CETEMPS, Physics Department, University of L’Aquila, L’Aquila, Italy
2. TAMSAT, Department of Meteorology, University of Reading, Reading, Berkshire, United Kingdom
Abstract
Publisher
American Meteorological Society
Subject
Atmospheric Science
Link
http://journals.ametsoc.org/jamc/article-pdf/45/11/1557/3534073/jam2426_1.pdf
Reference22 articles.
1. Optimal estimates of average area rainfall and optimal selection of raingauge locations.;Bastin;Water Resour. Res.,1984
2. Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network.;Bellerby;J. Appl. Meteor.,2000
3. Relating point to area average rainfall in semi-arid West Africa and the implications for rainfall estimates derived from satellite data.;Flitcroft;J. Appl. Meteor.,1989
4. Satellite-based rainfall estimation for river flow forecasting in Africa. I: Rainfall estimates and hydrological forecasts.;Grimes;Hydrol. Sci. J.,2003
5. Optimal area rainfall estimation using raingauges and satellite data.;Grimes;J. Hydrol.,1999
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. NowCasting-Nets: Representation Learning to Mitigate Latency Gap of Satellite Precipitation Products Using Convolutional and Recurrent Neural Networks;IEEE Transactions on Geoscience and Remote Sensing;2022
2. Climate change projections and extremes for Costa Rica using tailored predictors from CORDEX model output through statistical downscaling with artificial neural networks;International Journal of Climatology;2020-05-28
3. Implementation of a two-way coupled atmospheric-hydrological system for environmental modeling at regional scale;Hydrology Research;2013-08-23
4. An Artificial Neural Network Approach to Multispectral Rainfall Estimation over Africa;Journal of Hydrometeorology;2012-06-01
5. An artificial neural network technique for downscaling GCM outputs to RCM spatial scale;Nonlinear Processes in Geophysics;2011-12-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3