An artificial neural network technique for downscaling GCM outputs to RCM spatial scale

Author:

Chadwick R.,Coppola E.,Giorgi F.

Abstract

Abstract. An Artificial Neural Network (ANN) approach is used to downscale ECHAM5 GCM temperature (T) and rainfall (R) fields to RegCM3 regional model scale over Europe. The main inputs to the neural network were the ECHAM5 fields and topography, and RegCM3 topography. An ANN trained for the period 1960–1980 was able to recreate the RegCM3 1981–2000 mean T and R fields with reasonable accuracy. The ANN showed an improvement over a simple lapse-rate correction method for T, although the ANN R field did not capture all the fine-scale detail of the RCM field. An ANN trained over a smaller area of Southern Europe was able to capture this detail with more precision. The ANN was unable to accurately recreate the RCM climate change (CC) signal between 1981–2000 and 2081–2100, and it is suggested that this is because the relationship between the GCM fields, RCM fields and topography is not constant with time and changing climate. An ANN trained with three ten-year "time-slices" was able to better reproduce the RCM CC signal, particularly for the full European domain. This approach shows encouraging results but will need further refinement before becoming a viable supplement to dynamical regional climate modelling of temperature and rainfall.

Publisher

Copernicus GmbH

Subject

General Medicine

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3