GOES Climatology and Analysis of Thunderstorms with Enhanced 3.9-μm Reflectivity

Author:

Lindsey Daniel T.1,Hillger Donald W.1,Grasso Louie2,Knaff John A.2,Dostalek John F.2

Affiliation:

1. NOAA/NESDIS/ORA/RAMMB, Fort Collins, Colorado

2. Cooperative Institute for Research in the Atmosphere, Fort Collins, Colorado

Abstract

Abstract By combining observations from the Geostationary Operational Environmental Satellite (GOES) 3.9- and 10.7-μm channels, the reflected component of the 3.9-μm radiance can be isolated. In this paper, these 3.9-μm reflectivity measurements of thunderstorm tops are studied in terms of their climatological values and their utility in diagnosing cloud-top microphysical structure. These measurements provide information about internal thunderstorm processes, including updraft strength, and may be useful for severe weather nowcasting. Three years of summertime thunderstorm-top 3.9-μm reflectivity values are analyzed to produce maps of climatological means across the United States. Maxima occur in the high plains and Rocky Mountain regions, while lower values are observed over much of the eastern United States. A simple model is used to establish a relationship between 3.9-μm reflectivity and ice crystal size at cloud top. As the mean diameter of a cloud-top ice crystal distribution decreases, more solar radiation near 3.9 μm is reflected. Using the North American Regional Reanalysis dataset, the thermodynamic environment that favors thunderstorms with large 3.9-μm reflectivity values is identified. In the high plains and mountains, environments with relatively dry boundary layers, steep lapse rates, and large vertical shear values favor thunderstorms with enhanced 3.9-μm reflectivity. Thunderstorm processes that lead to small ice crystals at cloud top are discussed, and a possible relationship between updraft strength and 3.9-μm reflectivity is presented.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3