What Determines Above-Anvil Cirrus Plume Infrared Temperature?

Author:

Murillo Elisa M.1ORCID,Homeyer Cameron R.1

Affiliation:

1. a School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Above-anvil cirrus plumes (AACPs) in midlatitude convection are important indicators of severe storms and stratospheric hydration events. Recent studies of AACPs have shown large variability in their characteristics, although many of the causes remain unknown. Notably, some AACPs appear equally as cold (or colder) than the broader storm top when compared to the more frequently observed warm AACP feature in infrared satellite imagery. To confidently identify the presence of an AACP, trained experts utilize infrared imagery to support the primary source of AACP identification, visible imagery. Thus, nighttime AACPs are often left unidentified due to unavailable visible imagery, especially for cold AACPs. In this study, 89 warm and 89 cold AACPs from 1-min GOES-16 satellite imagery coupled with ground-based radar observations and reanalysis data are comparatively evaluated to answer the following research questions: 1) Why do some AACPs exhibit a warm feature in infrared imagery while others do not, and 2) what observable storm and environment differences exist between warm and cold AACPs? It is found that cold AACPs tend to occur in tropical environments, which feature higher, cold-point tropopauses. Conversely, warm AACPs tend to occur in midlatitude environments, with lower tropopauses accompanied by an isothermal region (or tropopause inversion layer) in the lower stratosphere. Similar storm characteristics are found for warm and cold AACP events, implying that infrared temperature variability is driven by environmental differences. Together, these results suggest that cold AACPs are predominantly tropospheric phenomena, while warm AACPs reside in the lower stratosphere. Significance Statement The purpose of this study is to determine why some storms with a specific cloud-top feature exhibit a broad warm spot in infrared satellite imagery while others appear cold. This is important because storms with this specific cloud-top feature, whether warm or cold, produce much more severe weather than most other storms. These cloud-top features are also potentially indicative of increased water vapor in the stratosphere, which results in warming of Earth’s climate. Our results help us better understand storms that are frequently severe and suggest that the storms with cold features are less important to understanding stratospheric water vapor and climate change.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference61 articles.

1. Thunderstorm top structure observed by aircraft overflights with an infrared radiometer;Adler, R. F.,1983

2. The characteristics of United States hail reports: 1955–2014;Allen, J. T.,2015

3. Allen, J. T., I. M. Giammanco, M. R. Kumjian, H. J. Punge, Q. Zhang, P. Groenemeijer, M. Kunz, and K. Ortega, 2020: Understanding hail in the Earth system. Rev. Geophys., 58, e2019RG000665, https://doi.org/10.1029/2019RG000665.

4. Stratospheric ozone over the United States in summer linked to observations of convection and temperature via chlorine and bromine catalysis;Anderson, J. G.,2017

5. Climatological features of global multiple tropopause events;Añel, J. A.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3