A Revised Real-Time Multivariate MJO Index

Author:

Liu Ping1,Zhang Qin2,Zhang Chidong3,Zhu Yuejian4,Khairoutdinov Marat1,Kim Hye-Mi1,Schumacher Courtney5,Zhang Minghua1

Affiliation:

1. School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

2. Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

3. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

4. Environmental Modeling Center, NOAA/NWS/NCEP, College Park, Maryland

5. Texas A&M University, College Station, Texas

Abstract

Abstract This study investigates why OLR plays a small role in the Real-time Multivariate (Madden–Julian oscillation) MJO (RMM) index and how to improve it. The RMM index consists of the first two leading principal components (PCs) of a covariance matrix, which is constructed by combined daily anomalies of OLR and zonal winds at 850 (U850) and 200 hPa (U200) in the tropics after being normalized with their globally averaged standard deviations of 15.3 W m−2, 1.8 m s−1, and 4.9 m s−1, respectively. This covariance matrix is reasoned mathematically close to a correlation matrix. Both matrices substantially suppress the overall contribution of OLR and make the index more dynamical and nearly transparent to the convective initiation of the MJO. A covariance matrix that does not use normalized anomalies leads to the other extreme where OLR plays a dominant role while U850 and U200 are minor. Numerous tests indicate that a simple scaling of the anomalies (i.e., 2 W m−2, 1 m s−1, and 1 m s−1) can better balance the roles of OLR and winds. The revised PCs substantially enhance OLR over the eastern Indian and western Pacific Oceans and change it less notably in other locations, while they reduce U850 and U200 only slightly. Comparisons with the original RMM in spatial structure, power spectra, and standard deviation demonstrate improvements of the revised RMM index.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3