Synoptic-Dynamic Analysis of Early Dry-Season Rainfall Events in the Vietnamese Central Highlands

Author:

van der Linden Roderick1,Fink Andreas H.2,Phan-Van Tan3,Trinh-Tuan Long3

Affiliation:

1. Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

2. Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

3. Department of Meteorology, Vietnam National University, Hanoi University of Science, Hanoi, Vietnam

Abstract

Abstract The Central Highlands are Vietnam’s main coffee growing region. Unusual wet spells during the early dry season in November and December negatively affect two growing cycles in terms of yield and quality. The meteorological causes of wet spells in this region have not been thoroughly studied to date. Using daily rain gauge measurements at nine stations for the period 1981–2007 in the Central Highlands, four dynamically different early dry-season rainfall cases were investigated in depth: 1) the tail end of a cold front, 2) a tropical depression–type disturbance, 3) multiple tropical wave interactions, and 4) a cold surge with the Borneo vortex. Cases 1 and 4 are mainly extratropically forced. In case 1, moisture advection ahead of a dissipating cold front over the South China Sea led to high equivalent potential temperature in the southern highland where this air mass stalled and facilitated recurrent outbreaks of afternoon convection. In this case, the low-level northeasterly flow over the South China Sea was diverted around the southern highlands by relatively stable low layers. On the contrary, low-level flow was more orthogonal to the mountain barrier and high Froude numbers and concomitant low stability facilitated the westward extension of the rainfall zone across the mountain barrier in the other cases. In case 3, an eastward-traveling equatorial Kelvin wave might have been a factor in this westward extension, too. The results show a variety of interactions of large-scale wave forcings, synoptic-convective dynamics, and orographic effects on spatiotemporal details of the rainfall patterns.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3