Moisture Pathways into the U.S. Intermountain West Associated with Heavy Winter Precipitation Events*

Author:

Alexander Michael A.1,Scott James D.2,Swales Dustin2,Hughes Mimi2,Mahoney Kelly2,Smith Catherine A.2

Affiliation:

1. NOAA/Earth System Research Laboratory, Boulder, Colorado

2. NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Abstract

Abstract Two methods were used to identify the paths of moisture transport that reach the U.S. Intermountain West (IMW) during heavy precipitation events in winter. In the first, the top 150 precipitation events at stations located within six regions in the IMW were identified, and then back trajectories were initiated at 6-h intervals on those days at the four Climate Forecast System Reanalysis grid points nearest the stations. The second method identified the leading patterns of integrated water vapor transport (IVT) using the three leading empirical orthogonal functions of IVT over land that were first normalized by the local standard deviation. The top 1% of the associated 6-hourly time series was used to construct composites of IVT, atmospheric circulation, and precipitation. The results from both methods indicate that moisture originating from the Pacific that leads to extreme precipitation in the IMW during winter takes distinct pathways and is influenced by gaps in the Cascades (Oregon–Washington), the Sierra Nevada (California), and Peninsular Ranges (from Southern California through Baja California). The moisture transported along these routes appears to be the primary source for heavy precipitation for the mountain ranges in the IMW. The synoptic conditions associated with the dominant IVT patterns include a trough–ridge couplet at 500 hPa, with the trough located northwest of the ridge where the associated circulation funnels moisture from the west-southwest through the mountain gaps and into the IMW.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3