Six Hundred Years of Reconstructed Atmospheric River Activity Along the US West Coast

Author:

Borkotoky Swatah Snigdha1ORCID,Williams A. Park23,Steinschneider Scott1ORCID

Affiliation:

1. Department of Biological and Environmental Engineering Cornell University Ithaca NY USA

2. Department of Geography UCLA Los Angeles CA USA

3. Lamont‐Doherty Earth Observatory of Columbia University Palisades NY USA

Abstract

AbstractAtmospheric rivers (AR) are critically important to water resources management along the US west coast, driving variability in both droughts and floods across the region. Inter‐annual variability of ARs is well documented in the instrumental record back to the mid‐twentieth century, but long‐term variations in the frequency and landfall location of ARs along the US west coast are poorly understood due to limited records. This limitation impedes the ability to contextualize emerging trends and projections of AR activity. Here we use station‐based records of daily precipitation and tree‐ring records to present novel, spatially explicit estimates of daily AR occurrences in the first half of the twentieth century and annual AR counts over the last 600 years. First, we use neural networks and daily precipitation across Western North America to classify the daily occurrence of AR landfalls in three regions along the US west coast during the cold season back to 1916 CE. Then, we reconstruct the annual frequency of AR landfalls in those same regions back to 1400 CE using a gridded, tree‐ring based reconstruction of the standardized precipitation index and a Poisson regression framework. The skillful reconstruction of daily and annual AR occurrences provides previously unavailable estimates of AR landfall variability and highlights new peaks in AR activity and modes of low‐frequency variability prior to the instrumental record. Our reconstructions suggest that the average latitude of AR landfall has varied considerably on multi‐decadal scales over the last 600 years, but without any discernible trends beyond this quasi‐oscillatory behavior.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3