Surface Water and Energy Budgets for the Mississippi River Basin in Three NCEP Reanalyses

Author:

Yang Rongqian1,Ek Michael2,Meng Jesse1

Affiliation:

1. Environmental Modeling Center, NOAA/NWS/NCEP, College Park, and I.M. Systems Group, Inc., Rockville, Maryland

2. Environmental Modeling Center, NOAA/NWS/NCEP, College Park, Maryland

Abstract

Abstract Surface water and energy budgets from the National Centers for Environmental Prediction–U.S. Department of Energy (NCEP–DOE) Atmospheric Model Intercomparison Project (AMIP-II) Global Reanalysis 2 (GR2), the North American Regional Reanalysis (NARR), and the NCEP Climate Forecast System Reanalysis (CFSR) are compared here with each other and with available observations over the Mississippi River basin. The comparisons in seasonal cycle, interannual variation, and annual mean over a 31-yr period show that there are a number of noticeable differences and similarities in the large-scale basin averages. Warm season precipitation and runoff in the GR2 are too large compared to the observations, and seasonal surface water variation is small. By contrast, the precipitation in both NARR and CFSR is more reasonable and in better agreement with the observation, although the corresponding seasonal runoff is very small. The main causes of the differences in both surface parameterization and approach used in assimilating the observed precipitation datasets and snow analyses are then discussed. Despite the discrepancies in seasonal water budget components, seasonal energy budget terms in the three reanalyses are close to each other and to available observations. The interannual variations in both water and energy budgets are comparable. This study shows that the CFSR achieves a large improvement over the GR2, indicating that the CFSR dataset can be used in climate variability studies. Nonetheless, improved land surface parameterization schemes and data assimilation techniques are needed to depict the surface water and energy climates better, in particular, the variation in seasonal runoff.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference75 articles.

1. Pacific Ocean wind stress and surface heat flux anomalies from NCEP reanalysis and observation: Cross-statistics and ocean model responses;Auad;J. Geophys. Res.,2001

2. Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains;Barlage;J. Geophys. Res.,2010

3. North American regional climate simulations with WRF/Noah-MP validation and the effect of ground water interaction;Barlage;Proc. 14th WRF User's Workshop,2013

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3