Assessment of a High-Resolution Climate Model for Surface Water and Energy Flux Simulations over Global Land: An Intercomparison with Reanalyses

Author:

Tian Di1,Pan Ming2,Wood Eric F.2

Affiliation:

1. Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, Alabama

2. Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Abstract

Abstract Land surface water and energy fluxes from the ensemble mean of the Atmospheric Model Intercomparison Project (AMIP) simulations of a Geophysical Fluid Dynamics Laboratory (GFDL) high-resolution climate model (AM2.5) were evaluated using offline simulations of a calibrated land surface model [Princeton Global Forcing (PGF)/VIC] and intercompared with three reanalysis datasets: MERRA-Land, ERA-Interim/Land, and CFSR. Using PGF/VIC as the reference, the AM2.5 precipitation, evapotranspiration, and runoff showed a global positive bias of ~0.44, ~0.27, and ~0.15 mm day−1, respectively. For the energy budget, while the AM2.5 net radiation agreed very well with the PGF/VIC, the AM2.5 improperly partitioned the net radiation, with the latent heat showing positive bias and sensible heat showing negative bias. The AM2.5 net radiation, latent heat, and sensible heat relative to the PGF/VIC had a global negative bias of ~1.42 W m−2, positive bias of ~7.8 W m−2, and negative bias of ~8.7 W m−2, respectively. The three reanalyses show greater biases in net radiation, likely due to the deficiencies in cloud parameterizations. At a regional scale, the biases of the AM2.5 water and energy budget components are mostly comparable to the three reanalyses and PGF/VIC. While the AM2.5 well simulated the actual values of water and energy fluxes, the temporal anomaly correlations of the three reanalyses with PGF/VIC were mostly greater than the AM2.5, partly due to the ensemble mean of the AM2.5 members averaging out the intrinsic variability of the land surface fluxes. The discrepancies among land surface model simulations, reanalyses, and high-resolution climate model simulations demonstrate the challenges in estimating and evaluating land surface hydrologic fluxes at regional-to-global scales.

Funder

NOAA Geophysical Fluid Dynamics Laboratory through the Princeton University Cooperative Institute for Climate Science

Auburn University Intramural Grants Program

National Institute of Food and Agriculture

Alabama Agricultural Experiment Station

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3