Streamflow Hydrograph Classification Using Functional Data Analysis

Author:

Ternynck Camille1,Ben Alaya Mohamed Ali2,Chebana Fateh2,Dabo-Niang Sophie3,Ouarda Taha B. M. J.4

Affiliation:

1. Institute Center for Water and Environment, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates, and Laboratoire LEM, Maison de la Recherche, Domaine Universitaire du Pont de Bois, University of Lille, Villeneuve-d’Ascq, France

2. Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec, Quebec, Canada

3. Laboratoire LEM, Maison de la Recherche, Domaine Universitaire du Pont de Bois, and Modal Team INRIA, University of Lille, Villeneuve-d’Ascq, France

4. Institute Center for Water and Environment, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates, and Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec, Quebec, Canada

Abstract

Abstract Classification of streamflow hydrographs plays an important role in a large number of hydrological and hydraulic studies. For instance, it allows decisions to be made regarding the implementation of hydraulic structures and characterization of different flood types, leading to a better understanding of extreme flow behavior. The employed hydrograph classification methods are generally based on a finite number of hydrograph characteristics and do not include all the available information contained in a discharge time series. In this paper, two statistical techniques from the theory of functional data classification are adapted and applied for the analysis of flood hydrographs. Functional classification directly employs all data of a discharge time series and thus contains all available information on shape, peak, and timing. This potentially allows a better understanding and treatment of floods as well as other hydrological phenomena. The considered functional methodology is applied to streamflow datasets from the province of Quebec, Canada. It is shown that classes obtained using functional approaches have merit and can lead to better representation than those obtained using a multidimensional hierarchical classification method. The considered methodology has the advantage of using all of the information contained in the hydrograph, thus reducing the subjectivity that is inherent in multidimensional analysis of the type and number of characteristics to be used and consequently diminishing the associated uncertainty.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference43 articles.

1. Unsupervised curve clustering using B-splines;Abraham;Scand. J. Stat.,2003

2. Variable selection for clustering and classification;Andrews;J. Classif.,2014

3. Classification, caractérisation et facteurs de variabilité spatiale des régimes hydrologiques naturels au Québec (Canada): Approche éco-géographique;Assani;Rev. Sci. Eau,2005

4. Projection-based curve clustering;Auder;J. Stat. Comput. Simul.,2012

5. Clustering with Bregman divergences;Banerjee;J. Mach. Learn. Res.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3