Development of Functional Quantile Autoregressive Model for River Flow Curve Forecasting

Author:

Mutis Muge1ORCID,Beyaztas Ufuk2ORCID,Simsek Gulhayat Golbasi1ORCID,Shang Han Lin3ORCID,Yaseen Zaher Mundher4ORCID

Affiliation:

1. Department of Statistics Yildiz Technical University Istanbul Türkiye

2. Department of Statistics Marmara University Istanbul Türkiye

3. Department of Actuarial Studies and Business Analytics Macquarie University Sydney NSW Australia

4. Civil and Environmental Engineering Department King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia

Abstract

AbstractAmong several hydrological processes, river flow is an essential parameter that is vital for different water resources engineering activities. Although several methodologies have been adopted over the literature for modeling river flow, the limitation still exists in modeling the river flow time series curve. In this research, a functional quantile autoregressive of order one model was developed to characterize the entire conditional distribution of the river flow time series curve. Based on the functional principal component analysis, the regression parameter function was estimated using a multivariate quantile regression framework. For this purpose, hourly scale river flow collected from three rivers in Australia (Mary River, Lockyer Valley, and Albert River) were used to evaluate the finite‐sample performance of the proposed methodology. A series of Monte‐Carlo experiments and historical data sets were examined at three stations. Further, uncertainty analysis was adopted for the methodology evaluation. Compared with the existing methods, the proposed model provides more robust forecasts for outlying observations, non‐Gaussian and heavy‐tailed error distribution, and heteroskedasticity. Also, the proposed model has the merit of predicting the intervals of future realizations of river flow time series at the central and non‐central locations. The results confirmed the potential for predicting the river flow time series curve with a high level of accuracy in comparison with the benchmark existing functional time series methods.

Funder

King Fahd University of Petroleum and Minerals

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3