The Impacts of California’s San Francisco Bay Area Gap on Precipitation Observed in the Sierra Nevada during HMT and CalWater

Author:

White Allen B.1,Neiman Paul J.1,Creamean Jessie M.2,Coleman Timothy2,Ralph F. Martin3,Prather Kimberly A.4

Affiliation:

1. NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

2. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

3. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

4. University of California, San Diego, La Jolla, California

Abstract

Abstract Atmospheric rivers (ARs) are narrow regions of enhanced water vapor transport, usually found on the warm-sector side of the polar cold front in many midlatitude storms formed primarily over the oceans. Nonbrightband (NBB) rain is a shallow orographic rainfall process driven by collision and coalescence that has been observed in some of these storms. NBB rain accounts for about one-third, on average, of the total winter season rainfall occurring at a coastal mountain site in Northern California. During the California Energy Commission’s CalWater project, nearly the same fraction of NBB rain was observed at a northern Sierra Nevada foothills site as compared to the coastal mountains, whereas less than half of the fractional amount of NBB rain was observed at a southern Sierra Nevada foothills site. Both Sierra Nevada sites often experience terrain-induced blocked flow, that is, Sierra barrier jet (SBJ) during landfalling winter storms. However, the northern Sierra Nevada site often is oriented geographically downwind of a gap in the coastal terrain near San Francisco during AR landfall. This gap allows maritime air in the AR to arrive at the northern site and enhance the collision–coalescence process in orographic feeder clouds as compared with the southern site. As a result, a greater amount and intensity of NBB rain and overall precipitation was produced at the northern site. This study uses a variety of observations collected in the coastal and Sierra Nevada ranges from the Hydrometeorology Testbed and CalWater field campaigns to document this behavior. A detailed case study provides additional context on the interaction between AR flow, the SBJ, and precipitation processes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3