Diurnal variations of rainfall affected by complex topography based on high-density observation in Chongqing over southwest China

Author:

Li Qiang,Zheng Yongguang,Zhou GuobingORCID,Zhu Yan,Liu Chao,Liu Yan

Abstract

AbstractLocated in the eastern edge of the Sichuan Basin (SCB) in the southwest China, Chongqing is a mountainous region with typical complex topographic features. Using the hourly rainfall observation data of high-density 1686 meteorological stations in Chongqing during warm season from 2009 to 2016, we investigated the diurnal characteristics of precipitation affected by complex topography. The complex mountainous terrain has a significant impact on diurnal variations and distinct regional features of rainfall amount, frequency, and intensity. The stations located in the higher complex mountainous areas have greater rainfall amount, frequency, and intensity than those in the lower surrounding areas. In addition, the detailed characteristics of the rainfall amount and frequency in the four study regions further show that the rainfall amount and frequency significantly increase with the rise of elevation, especially in the area that terrain height sharply increases along the mountain extending direction. The diurnal variation of the rainfall amount is characterized by a bimodal structure with a dominant early-morning peak occurring at approximately 0700 LST (23 UTC) and a weaker secondary late-afternoon peak at approximately 1600 LST (08 UTC), while the rainfall frequency has a single early-morning peak. The terrain height has a significant impact on the proportions of the early-morning rainfall. With the elevation increasing in the four study regions, the proportions of rainfall amount (frequency) that occurs during early-morning period decrease.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3