To the Origin of a Wintertime Screen-Level Temperature Bias at High Altitude in a Kilometric NWP Model

Author:

Gouttevin Isabelle1ORCID,Vionnet Vincent2,Seity Yann3,Boone Aaron3,Lafaysse Matthieu1,Deliot Yannick1,Merzisen Hugo1

Affiliation:

1. a Université Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Etudes de la Neige, Grenoble, France

2. b Environmental Numerical Prediction Research, Environment and Climate Change Canada, Dorval, Quebec, Canada

3. c CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

Abstract

Abstract High-resolution numerical weather prediction (NWP) systems present a strong potential to provide meteorological information in alpine terrain for diverse applications. However, they still suffer from biases highly detrimental for practical purposes. In this study, we investigate the origin of a significant wintertime screen-level temperature bias in forecasts of the AROME-France NWP system in high-altitude, snow-covered alpine terrain. For this purpose, a thorough set of meteorological and snow observations from two high-altitude instrumental sites is used. Targeted numerical simulations are carried out to disentangle the contributions to this bias coming from atmospheric fields, from the snow scheme, and from the coupling between the snowpack and the atmosphere. At both sites, the wind speed and incoming longwave radiation appear significantly negatively biased in AROME in the winter season. Using targeted offline simulations, we show that the simulation errors in these screen-level fields contribute to an average of 67% of the screen-level temperature bias of AROME, while the contribution of errors in the incoming shortwave radiation is negligible. Additionally, the screen-level temperature of AROME is not majorly impacted by changes in the complexity and especially the vertical layering of the snow model. However, it appears particularly sensitive to the parameterization of turbulent fluxes in stable conditions. Evidence suggest that these findings could at least partially be generalized to the whole AROME-France alpine domain. Hence, reducing the high-altitude, winter screen-level temperature bias in AROME may in great part proceed from improving the simulation of atmospheric fields and eliminating some bias compensations in the model.

Funder

Labex OSUG@2020

Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Etudes de la Neige, Grenoble, France

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference87 articles.

1. Impact of a multi-layer snow scheme on near-surface weather forecasts;Arduini, G.,2019

2. Armstrong, R. L., and J. D. Ives, Eds., 1976: Avalanche release and snow characteristics, San Juan Mountains, Colorado. Bureau of Reclamation Occasional Paper 19, 256 pp., https://snowstudies.org/wp-content/uploads/2020/03/OP19-AVALANCHE-RELEASE-AND-SNOW-CHARACTERISTICS-Reduced.pdf.

3. Améliorer la prévision de température en montagne par des descentes d’échelle;Arnould, G.,2021

4. Becken, S., 2010: The importance of climate and weather for tourism. Land Environment and People (LEaP), 23 pp., https://researcharchive.lincoln.ac.nz/bitstream/handle/10182/2920/weather_literature_review.pdf;jsessionid=54F8CFE60F33FE0FEA9A9732C81A6487?sequence=1.

5. Forecasting the formation of critical snow layers using a coupled snow cover and weather model;Bellaire, S.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3