A two-fold deep-learning strategy to correct and downscale winds over mountains
-
Published:2024-02-13
Issue:1
Volume:31
Page:75-97
-
ISSN:1607-7946
-
Container-title:Nonlinear Processes in Geophysics
-
language:en
-
Short-container-title:Nonlin. Processes Geophys.
Author:
Le Toumelin LouisORCID, Gouttevin IsabelleORCID, Galiez Clovis, Helbig NoraORCID
Abstract
Abstract. Assessing wind fields at a local scale in mountainous terrain has long been a scientific challenge, partly because of the complex interaction between large-scale flows and local topography. Traditionally, the operational applications that require high-resolution wind forcings rely on downscaled outputs of numerical weather prediction systems. Downscaling models either proceed from a function that links large-scale wind fields to local observations (hence including a corrective step) or use operations that account for local-scale processes, through statistics or dynamical simulations and without prior knowledge of large-scale modeling errors. This work presents a strategy to first correct and then downscale the wind fields of the numerical weather prediction model AROME (Application of Research to Operations at Mesoscale) operating at 1300 m grid spacing by using a modular architecture composed of two artificial neural networks and the DEVINE downscaling model. We show that our method is able to first correct the wind direction and speed from the large-scale model (1300 m) and then accurately downscale it to a local scale (30 m) by using the DEVINE downscaling model. The innovative aspect of our method lies in its optimization scheme that accounts for the downscaling step in the computations of the corrections of the coarse-scale wind fields. This modular architecture yields competitive results without suppressing the versatility of the DEVINE downscaling model, which remains unbounded to any wind observations.
Publisher
Copernicus GmbH
Reference52 articles.
1. Bénard, P., Vivoda, J., Mašek, J., Smolíková, P., Yessad, K., Smith, C., Brožková, R., and Geleyn, J.-F.: Dynamical kernel of the Aladin–NH spectral limited-area model: Revised formulation and sensitivity experiments, Q. J. Roy. Meteor. Soc., 136, 155–169, 2010. a 2. Bolibar, J., Rabatel, A., Gouttevin, I., Galiez, C., Condom, T., and Sauquet, E.: Deep learning applied to glacier evolution modelling, The Cryosphere, 14, 565–584, https://doi.org/10.5194/tc-14-565-2020, 2020. a, b 3. Bubnová, R., Hello, G., Bénard, P., and Geleyn, J.-F.: Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system, Mon. Weather Rev., 123, 515–535, 1995. a 4. Douville, H., Royer, J.-F., and Mahfouf, J.-F.: A new snow parameterization for the Meteo-France climate model, Clim. Dynam., 12, 21–35, 1995. a 5. Dujardin, J. and Lehning, M.: Wind-Topo: Downscaling near-surface wind fields to high-resolution topography in highly complex terrain with deep learning, Q. J. Roy. Meteor. Soc., 148, 1368–1388, https://doi.org/10.1002/qj.4265, 2022. a, b, c, d, e, f, g
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|