Rainfall Microphysics Influenced by Strong Wind during a Tornadic Storm

Author:

Bolek Abdullah1,Testik Firat Y.2

Affiliation:

1. 1 Graduate Student, Civil and Environmental Engineering Department, University of Texas at San Antonio

2. 2 Professor, Civil and Environmental Engineering Department, University of Texas at San Antonio

Abstract

Abstract Rainfall microphysical characteristics including raindrop fall speed, axis ratio, and canting angle were measured through field observations by using a High-Speed Optical Disdrometer (HOD) during and after tornadic severe storm passage. High and low wind and turbulence characteristics were observed during and after passage, respectively, which provided an opportunity to compare the effects of the different wind and turbulence characteristics on raindrop characteristics. During passage, 9.4% of the raindrops larger than 1.0 mm in volume equivalent diameter (D) were identified as sub-terminal, whereas only 0.5% of the raindrops of the same size were detected as sub-terminal after passage. Contrary to findings in literature, we could not find any distinct super-terminal fall speed behavior for raindrops with D<1.0 mm during or after passage. For raindrops with D>2.0 mm, deviations of the axis ratio distribution from the predicted distribution for the equilibrium raindrops were observed, and the deviations during passage were larger than those after passage. The deviations of the axis ratio distributions from the predicted distributions for the equilibrium raindrops were also observed for mid-sized (1.0<D<2.0 mm) raindrops; however, these deviations during and after passage were of similar magnitude. The canting angle distribution for raindrops with D>2.0 mm was found to have the mean value of approximately 0° both during and after passage and the standard deviation values of 24.7° during passage and 13.6° after passage. This study shows the clear influence of wind on various rainfall microphysical characteristics and documents the observed value ranges of these characteristics under strong wind that are of importance for a number of rainfall applications, including radar rainfall retrievals and rainfall modeling.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3