Time Series Construction of Oregon and Washington Snowfall since 1890 and an Update of California Snowfall through 2020

Author:

Christy John R.1

Affiliation:

1. a Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama

Abstract

Abstract Time series of snowfall observations from over 500 stations in Oregon (OR) and Washington (WA) were generated for subregions of these states. Data problems encountered were as follows: 1) monthly totals in printed reports prior to 1940 that were not in the digital archive, 2) archived data listed as “missing” that were available, 3) digitized reports after 2010 eliminated good data, and 4) “zero” totals incorrectly entered in the official archive rather than “missing,” especially after 1980. Though addressing these was done, there is reduced confidence that some regional time series are representative of true long-term trends, especially for regions with few systematically reporting stations. For most regions characterized by consistent monitoring and with the most robust statistical reproducibility, we find no statistically significant trends in their periods of record (up to 131 years) for November–April seasonal totals through April 2020. This result includes the main snowfall regions of the Cascade Range. However, snowfall in some lower-elevation areas of OR and WA appear to have experienced declining trends, consistent with an increase in northeastern Pacific Ocean temperatures. Finally, previously constructed time series through April 2011 for regions in California are updated through April 2020 to include the recent, exceptionally low seasonal totals on the western slopes of the Sierra Nevada. This update indicates 2014/15 was the record lowest, 2013/14 was the 5th lowest, and 2012/13 was the 14th lowest of 142 years. Even so, the 1879–2020 linear trend in this key watershed region, though −2.6% decade−1, was not significantly different from zero due to high interannual variability and reconstruction uncertainty.

Funder

Office of Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3