Assessing the Impacts of Global Warming on Snowpack in the Washington Cascades*

Author:

Casola Joseph H.1,Cuo Lan2,Livneh Ben2,Lettenmaier Dennis P.3,Stoelinga Mark T.1,Mote Philip W.4,Wallace John M.1

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

3. Department of Civil and Environmental Engineering, and JISAO/SMA CSES Climate Impacts Group, University of Washington, Seattle, Washington

4. JISAO/SMA CSES Climate Impacts Group, University of Washington, Seattle, Washington

Abstract

Abstract The decrease in mountain snowpack associated with global warming is difficult to estimate in the presence of the large year-to-year natural variability in observations of snow-water equivalent (SWE). A more robust approach for inferring the impacts of global warming is to estimate the temperature sensitivity (λ) of spring snowpack and multiply it by putative past and future temperature rises observed across the Northern Hemisphere. Estimates of λ can be obtained from (i) simple geometric considerations based on the notion that as the seasonal-mean temperature rises by the amount δT, the freezing level and the entire snowpack should rise by the increment δT/Γ, where Γ is the mean lapse rate; (ii) the regression of 1 April SWE measurements upon mean winter temperatures; (iii) a hydrological model forced by daily temperature and precipitation observations; and (iv) the use of inferred accumulated snowfall derived from daily temperature and precipitation data as a proxy for SWE. All four methods yield an estimated sensitivity of 20% of spring snowpack lost per degree Celsius temperature rise. The increase of precipitation accompanying a 1°C warming can be expected to decrease the sensitivity to 16%. Considering observations of temperature rise over the Northern Hemisphere, it is estimated that spring snow-water equivalent in the Cascades portion of the Puget Sound drainage basin should have declined by 8%–16% over the past 30 yr resulting from global warming, and it can be expected to decline by another 11%–21% by 2050. These losses would be statistically undetectable from a trend analysis of the region’s snowpack over the past 30 yr.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3