The Formation of Small-Scale Atmospheric Vortices via Horizontal Shearing Instability

Author:

Buban Michael S.1,Ziegler Conrad L.2

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract Motivated by high-resolution observations of small-scale atmospheric vortices along near-surface boundaries, this study presents a series of idealized simulations that attempt to replicate shear zones typical of drylines and other near-surface boundaries. The series of dry, constant potential temperature simulations are initialized with a north–south-oriented constant-vorticity shear zone and north–south periodic boundary conditions. In all simulations, the shear zones develop wavelike perturbations that eventually roll up into discrete vortices. These vortices have features resembling those observed in many laboratory and numerical studies (i.e., instabilities developed into elliptical cores connected by vorticity braids that precess and contain pressure minima in their centers). To assess the instability mechanism, the results are compared to linear theory. Excellent agreement is found between predictions from linear theory for the wavenumber of maximum growth as a function of shear zone width and growth rate as a function of shear zone vorticity, suggesting to a very good first approximation, horizontal shearing instability (HSI) is responsible for the growth of initial small perturbations. It is also found that predictions of linear theory tend to extend well into the nonlinear regime. Finally, preferred regions of cumulus formation are assessed by including moisture in four simulations. Maximum updrafts and simulated cumuli tend to form along the periphery of cores and/or along the braided regions adjacent to the cores. Because of the important modulating effect of misocyclone development via HSI and subsequent moisture transport, cumulus spacing and size/depth are also dependent on the shear zone width and vorticity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3