Impacts of Cloud Droplet–Nucleating Aerosols on Shallow Tropical Convection

Author:

Saleeby Stephen M.1,Herbener Stephen R.1,van den Heever Susan C.1,L’Ecuyer Tristan2

Affiliation:

1. Colorado State University, Fort Collins, Colorado

2. University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract Low-level warm-phase clouds cover a substantial portion of Earth’s oceans and play an important role in the global water and energy budgets. The characteristics of these clouds are controlled by the large-scale environment, boundary layer conditions, and cloud microphysics. Variability in the concentration of aerosols can alter cloud microphysical and precipitation processes that subsequently impact the system dynamics and thermodynamics and thereby create aerosol–cloud dynamic–thermodynamic feedback effects. In this study, three distinct cloud regimes were simulated, including stratocumulus, low-level cumulus (cumulus under stratocumulus), and deeper cumulus clouds. The simulations were conducted without environmental large-scale forcing, thereby allowing all three cloud types to freely interact with the environmental state in an undamped fashion. Increases in aerosol concentration in these unforced, warm-phase, tropical cloud simulations lead to the production of fewer low-level cumuli; thinning and erosion of the widespread stratocumulus layer; and the development of deeper, inversion-penetrating cumuli. The mechanisms for these changes are explored. Despite the development of deeper, more heavily precipitating cumuli, the reduction of the widespread moderately precipitating stratocumulus clouds leads to an overall reduction in domainwide accumulated precipitation when aerosol concentrations are enhanced.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3