Subsidence Warming as an Underappreciated Ingredient in Tropical Cyclogenesis. Part I: Aircraft Observations

Author:

Kerns Brandon W.1,Chen Shuyi S.1

Affiliation:

1. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Abstract

Abstract The development of a compact warm core extending from the mid-upper levels to the lower troposphere and related surface pressure falls leading to tropical cyclogenesis (TC genesis) is not well understood. This study documents the evolution of the three-dimensional thermal structure during the early developing stages of Typhoons Fanapi and Megi using aircraft dropsonde observations from the Impact of Typhoons on the Ocean in the Pacific (ITOP) field campaign in 2010. Prior to TC genesis, the precursor disturbances were characterized by warm (cool) anomalies above (below) the melting level (~550 hPa) with small surface pressure perturbations. Onion-shaped skew T–logp profiles, which are a known signature of mesoscale subsidence warming induced by organized mesoscale convective systems (MCSs), are ubiquitous throughout the ITOP aircraft missions from the precursor disturbance to the tropical storm stages. The warming partially erodes the lower-troposphere (850–600 hPa) cool anomalies. This warming results in increased surface pressure falls when superposed with the upper-troposphere warm anomalies associated with the long-lasting MCSs/cloud clusters. Hydrostatic pressure analysis suggests the upper-level warming alone would not result in the initial sea level pressure drop associated with the transformation from a disturbance to a TC. As Fanapi and Megi intensify into strong tropical storms, aircraft flight-level (700 hPa) and dropsonde data reveal that the warm core extends down to 850–600 hPa and has some characteristics of subsidence warming similar to the eyes of mature TCs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3