A Parameterization of Sticking Efficiency for Collisions of Snow and Graupel with Ice Crystals: Theory and Comparison with Observations*

Author:

Phillips Vaughan T. J.1,Formenton Marco1,Bansemer Aaron2,Kudzotsa Innocent1,Lienert Barry3

Affiliation:

1. Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

2. Earth System Laboratory, Nation Center for Atmospheric Research,+ Boulder, Colorado

3. Hawaii Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Abstract

Abstract A new parameterization of sticking efficiency for aggregation of ice crystals onto snow and graupel is presented. This parameter plays a crucial role for the formation of ice precipitation and for electrification processes. The parameterization is intended to be used in atmospheric models simulating the aggregation of ice particles in glaciated clouds. It should improve the ability to forecast snow. Based on experimental results and general considerations of collision processes, dependencies of the sticking efficiency on temperature, surface area, and collision kinetic energy of impacting particles are derived. The parameters have been estimated from some laboratory observations by simulating the experiments and minimizing the squares of the errors of the prediction of observed quantities. The predictions from the new scheme are compared with other available laboratory and field observations. The comparisons show that the parameterization is able to reproduce the thermal behavior of sticking efficiency, observed in published laboratory studies, with a peak around −15°C corresponding to dendritic vapor growth of ice. Finally, a new theory of sticking efficiency is proposed. It explains the empirically derived parameterization in terms of a probability distribution of the work that would be required to separate two contacting particles colliding in all possible ways among many otherwise identical collisions of the same pair with a given initial collision kinetic energy. For each collision, if this work done would exceed the initial collision kinetic energy, then there is no separation after impact. The probability of that occurring equals the sticking efficiency.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3