The Effects of Lake Representation on the Regional Hydroclimate in the ECMWF Reanalyses

Author:

Minallah Samar1,Steiner Allison L.1

Affiliation:

1. 1 Department of Climate and Space Sciences and Engineering, University of Michigan Ann Arbor

Abstract

AbstractLakes are an integral part of the geosphere, but they are challenging to represent in Earth system models which either exclude lakes or prescribe properties without simulating lake dynamics. In ECMWF Interim reanalysis (ERA-Interim), lakes are represented by prescribing lake surface water temperatures (LSWT) from external data sources, while the newer generation ERA5 introduces the FLake parameterization scheme to the modelling system with different LSWT assimilation data sources. This study assesses the performance of these two reanalyses over three regions with the largest lakes in the world (Laurentian Great Lakes, African Great Lakes, and Lake Baikal) to understand the effects of their simulation differences on hydrometeorological variables. We find that differences in lake representation alter the associated hydrological and atmospheric processes and can affect regional hydroclimatic assessments. There are prominent differences in LSWT between the two datasets which influence the simulation of lake-effect snowstorms in the Laurentian winters and lake-land breeze circulation patterns in the African region. Generally, ERA5 has warmer LSWT in all three regions for most months (by 2-12 K) and its evaporation rates are up to twice the magnitudes in ERA-Interim. In the Laurentian lakes, ERA5 has strong biases in LSWT and evaporation magnitudes. Over Lake Baikal and the African Great Lakes, ERA5 LSWT magnitudes are closer to satellite-based datasets, albeit with warm bias (1-4 K), while ERA-Interim underestimates the magnitudes. ERA5 also simulates intense precipitation hotspots in lake proximity that are not visible in ERA-Interim and other observation-based datasets. Despite these limitations, ERA5 improves the simulation of lake-land circulation patterns across the African Great Lakes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3