A Method for a Direct Measure of Entrainment and Detrainment

Author:

Wang Zhiting1

Affiliation:

1. College of Atmospheric Science, Lanzhou University, Lanzhou, China

Abstract

AbstractThe entrainment and detrainment rates are important quantities characterizing airmass exchange between clouds and the environment. One of the challenges in calculating the rates is the need to know the velocity vector of the cloud interface in relation to that of the cloud-free air; however, the interface is not well resolved in most cloud model simulations and so the precise value of the vector is not known. Here a new method is described to approximately calculate mass fluxes across the cloud surface in well-resolved simulations of cumulus convection. The method does away with the need to calculate a cloud interface velocity and instead uses gradients of a defined cloud scalar across the cloud interface. As a result, the entrainment and detrainment rates are expressed as an integration over a small region around the cloud interface. The integrand is composed of the total derivative of the cloud scalar. The new method is applied to large-eddy simulations (LES) of a shallow cumulus case and a deep convection case. Compared to a previous method, the approach described here gives 1.5–2 times smaller exchange rates and shows less noise. The smaller exchange rates are explained as the result of differences in how the two methods correct for the advective contribution to variations of cloud volume. Derived two-dimensional distributions of the exchange rates agree well for both methods. Spatial correlation coefficients are about 0.69–0.88 for entrainment and 0.55–0.78 for detrainment.

Funder

Fundamental Research Funds for teh Central Universities

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3