A Multiscale Local Gain Form Ensemble Transform Kalman Filter (MLGETKF)

Author:

Wang Xuguang1,Chipilski Hristo G.1,Bishop Craig H.2,Satterfield Elizabeth3,Baker Nancy3,Whitaker Jeffrey S.4

Affiliation:

1. a School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. b University of Melbourne, Melbourne, Victoria, Australia

3. c Naval Research Laboratory, Monterey, California

4. d Physical Sciences Laboratory, NOAA/Earth System Research Laboratories, Boulder, Colorado

Abstract

AbstractA new multiscale, ensemble-based data assimilation (DA) method, multiscale local gain form ensemble transform Kalman filter (MLGETKF), is introduced. MLGETKF allows simultaneous update of multiple scales for both the ensemble mean and perturbations through assimilating all observations at once. MLGETKF performs DA in independent local volumes, which lends the algorithm a high degree of computational scalability. The multiscale analysis is enabled through the rapid creation of many pseudoensemble perturbations via a multiscale ensemble modulation procedure. The Kalman gain that is used to update the raw background ensemble mean and perturbations is based on this modulated ensemble, which intrinsically includes multiscale model space localization. Experiments with a noncycled statistical model show that the full background covariance estimated by MLGETKF more accurately resembles the shape of the true covariance than a scale-unaware localization. The mean analysis from the best-performing MLGETKF is statistically significantly more accurate than the best-performing scale-unaware LGETKF. The accuracy of the MLGETKF analysis is more sensitive to small-scale band localization radius than large-scale band. MLGETKF is further examined in a cycling DA context with a surface quasigeostrophic model. The root-mean-square potential temperature analysis error of the best-performing MLGETKF is 17.2% lower than that of the best-performing LGETKF. MLGETKF reduces analysis errors measured in kinetic energy spectra space by 30%–80% relative to LGETKF with the largest improvement at large scales. MLGETKF deterministic and ensemble mean forecasts are more accurate than LGETKF for full and large scales up to 5–6-day lead time and for small scales up to 3–4-day lead time, gaining ~12 h–1 day of predictability.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3