Convection Initiation and Growth at the Coast of South China. Part II: Effects of the Terrain, Coastline, and Cold Pools

Author:

Du Yu1ORCID,Chen Guixing1,Han Bin1,Bai Lanqiang1,Li Minghua2

Affiliation:

1. School of Atmospheric Sciences, Sun Yat-sen University, and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

2. Meteorological Bureau of Shenzhen Municipality, and Key Laboratory of Severe Weather in South China, Shenzhen, China

Abstract

AbstractThrough conducting dynamic and thermodynamic diagnoses as well as a series of numerical sensitivity simulations, we investigated the effects of the terrain, coastline, and cold pools on convection initiation (CI) and its subsequent upscale convective growth (UCG) during a case of heavy rainfall along the coast of South China. CI occurred at the vertex of the coastal concave mountain geometry as a combined result of coastal convergence, orographic lifting, and mesoscale ascent driven by the terminus of a marine boundary layer jet (MBLJ). In numerical simulations with the coastline or terrain of South China removed, the coastal CI does not occur or becomes weaker as the MBLJ extends farther north, suggesting that the coastline and terrain play a role in CI. In addition, local small-scale terrain can modulate the detailed location and timing of CI and UCG. When the coastal concave terrain and coastline near the CI are artificially removed or filled by additional mountains, the orographic lifting and the local convergence along the coast correspondingly change, which strongly affects the CI and UCG. From a thermodynamic perspective, the coastal concave terrain plays the role of a local moisture “catcher,” which promotes low-level moistening by blocking water vapor coming from an upstream moist tongue over the ocean. Furthermore, new convection is continuously generated by the lifting of low-level moist southerlies at the leading edges of cold pools that tend to move southeastward because of the blocking coastal mountains. Sensitivity experiments suggest that the MCS becomes weaker and moves more slowly when cold pools are weakened through a reduction of rain-evaporation cooling.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Guangzhou Science and Technology Plan Projects

Fundamental Research Funds for Central Universities of the Central South University

the Young Elite Scientists Sponsorship Program by CAST

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3