A Bimodal Diagnostic Cloud Fraction Parameterization. Part I: Motivating Analysis and Scheme Description

Author:

Van Weverberg Kwinten1,Morcrette Cyril J.1,Boutle Ian1,Furtado Kalli1,Field Paul R.1

Affiliation:

1. a Met Office, Exeter, United Kingdom

Abstract

AbstractCloud fraction parameterizations are beneficial to regional, convection-permitting numerical weather prediction. For its operational regional midlatitude forecasts, the Met Office uses a diagnostic cloud fraction scheme that relies on a unimodal, symmetric subgrid saturation-departure distribution. This scheme has been shown before to underestimate cloud cover and hence an empirically based bias correction is used operationally to improve performance. This first of a series of two papers proposes a new diagnostic cloud scheme as a more physically based alternative to the operational bias correction. The new cloud scheme identifies entrainment zones associated with strong temperature inversions. For model grid boxes located in this entrainment zone, collocated moist and dry Gaussian modes are used to represent the subgrid conditions. The mean and width of the Gaussian modes, inferred from the turbulent characteristics, are then used to diagnose cloud water content and cloud fraction. It is shown that the new scheme diagnoses enhanced cloud cover for a given gridbox mean humidity, similar to the current operational approach. It does so, however, in a physically meaningful way. Using observed aircraft data and ground-based retrievals over the southern Great Plains in the United States, it is shown that the new scheme improves the relation between cloud fraction, relative humidity, and liquid water content. An emergent property of the scheme is its ability to infer skewed and bimodal distributions from the large-scale state that qualitatively compare well against observations. A detailed evaluation and resolution sensitivity study will follow in Part II.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3