Structure and Dynamics of Ensemble Correlations for Satellite All-Sky Observations in an FV3-Based Global-to-Regional Nested Convection-Permitting Ensemble Forecast of Hurricane Harvey

Author:

Zhang Yunji1,Chen Xingchao1,Lu Yinghui12

Affiliation:

1. 1 Center for Advanced Data Assimilation and Predictability Techniques, and Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

2. 2 School of Atmospheric Sciences, Nanjing University, Nanjing, China

Abstract

AbstractThere are ongoing efforts to establish an ensemble data assimilation and prediction system for tropical cyclones based on the FV3 (finite-volume cubed-sphere) dynamic core with the capability to assimilate satellite all-sky infrared and microwave observations. To complement the system developments and improve our understanding of the assimilation of all-sky infrared and microwave observations, this study assesses their potential impacts on the analysis of Hurricane Harvey (2017) through examinations of the structure and dynamics of the ensemble-based correlations as well as single observation data assimilation experiments, using an ensemble forecast generated by a global-to-regional nested FV3-based model. It is found that different infrared and microwave channels are sensitive to different types of hydrometeors within different layers of the atmosphere, and the correlations vanish beyond 200 km in the region covered by cloud or abundant hydrometeors. The spatial correlations between brightness temperatures and model states will adjust the structure and intensity of the hurricane in the model so that the simulated hurricane will better fit the “observed” brightness temperatures. In general, these results show how assimilating infrared and microwave together can improve the analyses of tropical cyclone intensity and structure, which may lead to improved intensity forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3