Potential for new constraints on tropical cyclone surface-exchange coefficients through simultaneous ensemble-based state and parameter estimation

Author:

Nystrom Robert G.1,Greybush Steven J.1,Chen Xingchao1,Zhang Fuqing1

Affiliation:

1. 1 Department of Meteorology and Atmospheric Science, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania, USA

Abstract

AbstractThe tropical cyclone (TC) surface-exchange coefficients of enthalpy (Ck) and momentum (Cd) at high wind speeds have been notoriously challenging to estimate. This difficulty arises from many factors, including the difficulties in collecting observations within the turbulent TC boundary layer, and the complex coupled physical interactions between the TC boundary layer and ocean surface, which are challenging to accurately model. Motivated by recent studies highlighting the limited practical predictability of TC intensity as a result of uncertainty in the physical representation of the air-sea fluxes of momentum and enthalpy at high wind speeds, we investigate the potential to estimate the surface enthalpy and momentum exchange coefficients through ensemble data assimilation. Significant ensemble correlations between tangential wind, radial wind, and simulated infrared brightness temperatures with parameters controlling the enthalpy and momentum exchange coefficients suggest potential to use all-sky satellite and/or airborne radial velocity observations to estimate these unknown parameters. Using a series of observing system simulation experiments (OSSEs), simulated infrared brightness temperature observations, and a known truth, we demonstrate some potential for simultaneous state and parameter estimation with an ensemble-based data assimilation system to converge toward the correct known parameter values. In all OSSEs with either one or multiple unknown parameters, the initial parameter errors are reduced through simultaneous model state and parameter estimation. However, challenges still exist in converging to the precise true parameter values, as state errors during rapid intensification can project onto the parameter estimates.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3