The Impact of Assimilating GPS Precipitable Water Vapor in Convective-Permitting WRF-ARW on North American Monsoon Precipitation Forecasts over Northwest Mexico

Author:

Risanto Christoforus Bayu1,Castro Christopher L.1,Arellano Avelino F.1,Moker James M.2,Adams David K.3

Affiliation:

1. a Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona

2. b 56th Operations Support Squadron Weather Flight, Luke Air Force Base, Glendale, Arizona

3. c Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico

Abstract

AbstractWe assess the impact of GPS precipitable water vapor (GPS-PWV) data assimilation (DA) on short-range North American monsoon (NAM) precipitation forecasts, across 38 days with weak synoptic forcing, during the NAM GPS Hydrometeorological Network field campaign in 2017 over northwest Mexico. Utilizing an ensemble-based data assimilation technique, the GPS-PWV data retrieved from 18 observation sites are assimilated every hour for 12 hours into a 30-member ensemble convective-permitting (2.5 km) Advanced Research version of the Weather Research and Forecasting (WRF-ARW) model. As the assimilation of the GPS-PWV improves the initial condition of WRF by reducing the root mean square error and bias of PWV across 1200-1800 UTC, this also leads to an improvement in capturing nocturnal convection of mesoscale convective systems (MCSs; after 0300 UTC) and to an increase by 0.1 mm h-1 in subsequent precipitation during the 0300-0600 UTC period relative to no assimilation of the GPS-PWV (NODA) over the area with relatively more observation sites. This response is consistent with observed precipitation from the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement Final Precipitation product. Moreover, compared to the NODA, we find that the GPS-PWV DA decreases cloud top temperature, increases most unstable convective available energy and surface dewpoint temperature, and thus creates a more favorable condition for convective organization in the region.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3