A Convection Parameterization for Low-CAPE Environments

Author:

McTaggart-Cowan Ron1,Vaillancourt Paul A.1,Separovic Leo1,Corvec Shawn2,Zadra Ayrton1

Affiliation:

1. a Atmospheric Numerical Weather Prediction Research Section, Environment and Climate Change Canada, Dorval, Quebec, Canada

2. b Numerical Weather Prediction Development, Environment and Climate Change Canada, Dorval, Quebec, Canada

Abstract

AbstractNumerical models that are unable to resolve moist convection in the atmosphere employ physical parameterizations to represent the effects of the associated processes on the resolved-scale state. Most of these schemes are designed to represent the dominant class of cumulus convection that is driven by latent heat release in a conditionally unstable profile with a surplus of convective available potential energy (CAPE). However, an important subset of events occurs in low-CAPE environments in which potential and symmetric instabilities can sustain moist convective motions. Convection schemes that are dependent on the presence of CAPE are unable to depict accurately the effects of cumulus convection in these cases. A mass-flux parameterization is developed to represent such events, with triggering and closure components that are specifically designed to depict subgrid-scale convection in low-CAPE profiles. Case studies show that the scheme eliminates the “bull’s-eyes” in precipitation guidance that develop in the absence of parameterized convection, and that it can represent the initiation of elevated convection that organizes squall-line structure. The introduction of the parameterization leads to significant improvements in the quality of quantitative precipitation forecasts, including a large reduction in the frequency of spurious heavy-precipitation events predicted by the model. An evaluation of surface and upper-air guidance shows that the scheme systematically improves the model solution in the warm season, a result that suggests that the parameterization is capable of accurately representing the effects of moist convection in a range of low-CAPE environments.

Funder

Environment and Climate Change Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3