Incorporating the Effect of Large‐Scale Vertical Motion on Convection Through Convective Mass Flux Adjustment in E3SMv2

Author:

Song Xiaoliang1ORCID,Zhang Guang1ORCID,Wan Hui2ORCID,Xie Shaocheng3ORCID

Affiliation:

1. Scripps Institution of Oceanography La Jolla CA USA

2. Atmospheric Sciences and Global Change Division Pacific Northwest National Laboratory Richland WA USA

3. Lawrence Livermore National Laboratory Livermore CA USA

Abstract

AbstractRecent observational studies suggest that the large‐scale dynamical forcing (vertical motion) plays important roles in deep convection development. In this study we propose a convective mass flux adjustment (MAdj) approach to represent the dynamical effects of large‐scale vertical motion on convection in the Department of Energy's Energy Exascale Earth System Model version 2 (E3SMv2). With MAdj, convection is enhanced (suppressed) when there is large‐scale ascending (descending) motion at the planetary boundary layer top. The coupling of convection with large‐scale circulation significantly improves the simulation of climate variability in E3SMv2 across multiple scales from the diurnal cycle, convectively coupled equatorial waves, to the Madden‐Julian Oscillation (MJO). The standard E3SMv2 tends to simulate overly weak diurnal amplitude of precipitation and overly weak variance of convectively coupled equatorial Kelvin and westward inertio‐gravity (WIG) waves. It also fails to simulate the essential characteristics of the MJO: continuous eastward propagation. With MAdj, the amplitude of diurnal cycle of precipitation is systematically increased and its probability density distribution is much closer to observations. The MAdj can also simulate more realistic eastward propagation of the MJO and much stronger convectively coupled Kelvin and WIG waves. Moreover, the MAdj approach slightly improves the climatology simulations in precipitation, cloud, radiation, circulation, temperature, and moisture fields, with overall root‐mean‐square error (RMSE) of major climatological fields reduced by about 2%. The MAdj approach suppresses excessive grid‐scale precipitation, reducing precipitation wet biases over South China Sea, Philippine Sea, Himalayas, and South Pacific Convergence Zone in western Pacific in summer.

Funder

Biological and Environmental Research

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3