Convective-Storm Environments in Subtropical South America from High-Frequency Soundings during RELAMPAGO-CACTI

Author:

Schumacher Russ S.1ORCID,Hence Deanna A.2,Nesbitt Stephen W.2,Trapp Robert J.2,Kosiba Karen A.3,Wurman Joshua3,Salio Paola4,Rugna Martin5,Varble Adam C.6,Kelly Nathan R.1

Affiliation:

1. a Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

2. b Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

3. c Center for Severe Weather Research, Boulder, Colorado

4. d Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA), Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (UMI IFAECI/CNRS-CONICET-UBA), Departamento de Ciencias de la Atmósfera y los Océanos, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina

5. e Servicio Meteorológico Nacional, Argentina

6. f Pacific Northwest National Laboratory, Richland, Washington

Abstract

AbstractDuring the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations-Cloud, Aerosol, and Complex Terrain Interactions (RELAMPAGO-CACTI) field experiments in 2018–19, an unprecedented number of balloon-borne soundings were collected in Argentina. Radiosondes were launched from both fixed and mobile platforms, yielding 2712 soundings during the period 15 October 2018–30 April 2019. Approximately 20% of these soundings were collected by highly mobile platforms, strategically positioned for each intensive observing period, and launching approximately once per hour. The combination of fixed and mobile soundings capture both the overall conditions characterizing the RELAMPAGO-CACTI campaign, as well as the detailed evolution of environments supporting the initiation and upscale growth of deep convective storms, including some that produced hazardous hail and heavy rainfall. Episodes of frequent convection were characterized by sufficient quantities of moisture and instability for deep convection, along with deep-layer vertical wind shear supportive of organized or rotating storms. A total of 11 soundings showed most unstable convective available potential energy (MUCAPE) exceeding 6000 J kg−1, comparable to the extreme instability observed in other parts of the world with intense deep convection. Parameters used to diagnose severe-storm potential showed that conditions were often favorable for supercells and severe hail, but not for tornadoes, primarily because of insufficient low-level wind shear. High-frequency soundings also revealed the structure and evolution of the boundary layer leading up to convection initiation, convectively generated cold pools, the South American low-level jet (SALLJ), and elevated nocturnal convection. This sounding dataset will enable improved understanding and prediction of convective storms and their surroundings in subtropical South America, as well as comparisons with other heavily studied regions such as the central United States that have not previously been possible.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3