The Representation of Ocean Circulation and Variability in Thermodynamic Coordinates

Author:

Groeskamp Sjoerd1,Zika Jan D.2,McDougall Trevor J.3,Sloyan Bernadette M.4,Laliberté Frédéric5

Affiliation:

1. CSIRO Wealth from Oceans National Research Flagship, and Institute for Marine and Atmospheric Studies, University of Tasmania, Hobart, Tasmania, Australia

2. University of Southampton, National Oceanography Centre, Southampton, United Kingdom

3. School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

4. CSIRO Wealth from Oceans National Research Flagship, and Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia

5. Department of Physics, University of Toronto, Toronto, Ontario, Canada

Abstract

Abstract The ocean’s circulation is analyzed in Absolute Salinity SA and Conservative Temperature Θ coordinates. It is separated into 1) an advective component related to geographical displacements in the direction normal to SA and Θ isosurfaces and 2) into a local component, related to local changes in SA–Θ values, without a geographical displacement. In this decomposition, the sum of the advective and local components of the circulation is equivalent to the material derivative of SA and Θ. The sum is directly related to sources and sinks of salt and heat. The advective component is represented by the advective thermohaline streamfunction . After removing a trend, the local component can be represented by the local thermohaline streamfunction . Here, can be diagnosed using a monthly averaged time series of SA and Θ from an observational dataset. In addition, and are determined from a coupled climate model. The diathermohaline streamfunction is the sum of and and represents the nondivergent diathermohaline circulation in SA–Θ coordinates. The diathermohaline trend, resulting from the trend in the local changes of SA and Θ, quantifies the redistribution of the ocean’s volume in SA–Θ coordinates over time. It is argued that the diathermohaline streamfunction provides a powerful tool for the analysis of and comparison among ocean models and observation-based gridded climatologies.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3