Satellite Rainfall Uncertainty Estimation Using an Artificial Neural Network

Author:

Bellerby T. J.1

Affiliation:

1. Department of Geography, University of Hull, Hull, United Kingdom

Abstract

Abstract This paper describes a neural network–based approach to estimate the conditional distribution function (cdf) of rainfall with respect to multidimensional satellite-derived input data. The methodology [Conditional Histogram of Precipitation (CHIP)] employs a histogram-based approximation of the cdf. In addition to the conditional expected rainfall rate, it provides conditional probabilities for that rate falling within each of a fixed set of intervals or bins. A test algorithm based on the CHIP approach was calibrated against Goddard profiling algorithm (GPROF) rainfall data for June–August 2002 and then used to produce a 30-min, 0.5° rainfall product from global (60°N–60°S) composite geostationary thermal infrared imagery for June–August 2003. Estimated rainfall rates and conditional probabilities were validated against 2003 GPROF data. The CHIP methodology provides the means to extend existing probabilistic and ensemble satellite rainfall error models, conditioned on a single, scalar, satellite rainfall predictor or upon scalar rainfall-rate outputs, to make full use of multidimensional input data.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3