Evaluation and Intercomparison of High-Resolution Satellite Precipitation Estimates—GPM, TRMM, and CMORPH in the Tianshan Mountain Area

Author:

Zhang ChiORCID,Chen Xi,Shao Hua,Chen Shuying,Liu Tong,Chen Chunbo,Ding Qian,Du Haoyang

Abstract

With high resolution and wide coverage, satellite precipitation products like Global Precipitation Measurement (GPM) could support hydrological/ecological research in the Tianshan Mountains, where the spatial heterogeneity of precipitation is high, but where rain gauges are sparse and unevenly distributed. Based on observations from 46 stations from 2014–2015, we evaluated the accuracies of three satellite precipitation products: GPM, Tropical Rainfall Measurement Mission (TRMM) 3B42, and the Climate Prediction Center morphing technique (CMORPH), in the Tianshan Mountains. The satellite estimates significantly correlated with the observations. They showed a northwest–southeast precipitation gradient that reflected the effects of large-scale circulations and a characteristic seasonal precipitation gradient that matched the observed regional precipitation pattern. With the highest correlation (R = 0.51), the lowest error (RMSE = 0.85 mm/day), and the smallest bias (1.27%), GPM outperformed TRMM and CMORPH in estimating daily precipitation. It performed the best at both regional and sub-regional scales and in low and mid-elevations. GPM had relatively balanced performances across all seasons, while CMORPH had significant biases in summer (46.43%) and winter (−22.93%), and TRMM performed extremely poorly in spring (R = 0.31; RMSE = 1.15 mm/day; bias = −20.29%). GPM also performed the best in detecting precipitation events, especially light and moderate precipitation, possibly due to the newly added Ka-band and high-frequency microwave channels. It successfully detected 62.09% of the precipitation events that exceeded 0.5 mm/day. However, its ability to estimate severe rainfall has not been improved as expected. Like other satellite products, GPM had the highest RMSE and bias in summer, suggesting limitations in its way of representing small-scale precipitation systems and isolated deep convection. It also underestimated the precipitation in high-elevation regions by 16%, suggesting the difficulties of capturing the orographic enhancement of rainfall associated with cap clouds and feeder–seeder cloud interactions over ridges. These findings suggest that GPM may outperform its predecessors in the mid-/high-latitude dryland, but not the tropical mountainous areas. With the advantage of high resolution and improved accuracy, the GPM creates new opportunities for understanding the precipitation pattern across the complex terrains of the Tianshan Mountains, and it could improve hydrological/ecological research in the area.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3