Convection‐Permitting ICON‐LAM Simulations for Renewable Energy Potential Estimates Over Southern Africa

Author:

Chen Shuying1234ORCID,Poll Stefan135,Hendricks Franssen Harrie‐Jan13ORCID,Heinrichs Heidi2,Vereecken Harry13ORCID,Goergen Klaus13ORCID

Affiliation:

1. Institute of Bio‐ and Geosciences Agrosphere (IBG‐3) Forschungszentrum Jülich GmbH Jülich Germany

2. Institute of Energy and Climate Research – Techno‐economic Systems Analysis (IEK‐3) Forschungszentrum Jülich GmbH Jülich Germany

3. Centre for High‐Performance Scientific Computing in Terrestrial Systems Geoverbund ABC/J Jülich Germany

4. Department of Geosciences and Geography RWTH Aachen University Aachen Germany

5. Jülich Supercomputing Centre (JSC) – Simulation and Data Laboratory Terrestrial Systems Forschungszentrum Jülich GmbH Jülich Germany

Abstract

AbstractRenewable energy is recognized in Africa as a means for climate change mitigation, but also to provide access to electricity in sub‐Saharan Africa, where three‐quarters of the global population without electricity resides. Reliable and highly resolved renewable energy potential (REP) information is indispensable to support power plants expansion. Existing atmospheric data sets over Africa that are used for REP estimates are often characterized by data gaps, or coarse resolution. With the aim to overcome these challenges, the ICOsahedral Nonhydrostatic (ICON) Numerical Weather Prediction (ICON‐NWP) model in its Limited Area Mode (ICON‐LAM) is implemented and run over southern Africa in a hindcast dynamical downscaling setup at a convection‐permitting 3.3 km horizontal resolution. The simulation time span covers contrasting solar and wind weather years from 2017 to 2019. To assess the suitability of the novel simulations for REP estimates, the simulated hourly 10 m wind speed (sfcWind) and hourly surface solar irradiance (rsds) are extensively evaluated against a large compilation of in situ observations, satellite, and composite data products. ICON‐LAM reproduces the spatial patterns, temporal evolution, the variability, and absolute values of sfcWind sufficiently well, albeit with a slight overestimation and a mean bias (mean error (ME)) of 1.12 m s−1 over land. Likewise the simulated rsds with an ME of 50 W m−2 well resembles the observations. This new ICON simulation data product will be the basis for ensuing REP estimates that will be compared with existing lower resolution data sets.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

Reference153 articles.

1. The state of renewable energy development in South Africa: An overview

2. Crop evapotranspiration‐Guidelines for computing crop water requirements‐FAO Irrigation and drainage paper 56;Allen R. G.;Fao, Rome,1998

3. Monthly, Seasonal and Yearly Assessments of Global Solar Radiation, Clearness Index and Diffuse Fractions in Alice, South Africa

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3