Parametric Representation of the Primary Hurricane Vortex. Part II: A New Family of Sectionally Continuous Profiles

Author:

Willoughby H. E.1,Darling R. W. R.2,Rahn M. E.3

Affiliation:

1. International Hurricane Research Center, Florida International University, Miami, Florida

2. National Security Agency, Fort George G. Meade, Maryland

3. NOAA/AOML/Hurricane Research Division, Miami, Florida

Abstract

Abstract For applications such as windstorm underwriting or storm-surge forecasting, hurricane wind profiles are often approximated by continuous functions that are zero at the vortex center, increase to a maximum in the eyewall, and then decrease asymptotically to zero far from the center. Comparisons between the most commonly used functions and aircraft observations reveal systematic errors. Although winds near the peak are too strong, they decrease too rapidly with distance away from the peak. Pressure–wind relations for these profiles typically overestimate maximum winds. A promising alternative is a family of sectionally continuous profiles in which the wind increases as a power of radius inside the eye and decays exponentially outside the eye after a smooth polynomial transition across the eyewall. Based upon a sample of 493 observed profiles, the mean exponent for the power law is 0.79 and the mean decay length is 243 km. The database actually contains 606 aircraft sorties, but 113 of these failed quality-control screening. Hurricanes stronger than Saffir–Simpson category 2 often require two exponentials to match the observed rapid decrease of wind with radius just outside the eye and slower decrease farther away. Experimentation showed that a fixed value of 25 km was satisfactory for the faster decay length. The mean value of the slower decay length was 295 km. The mean contribution of the faster exponential to the outer profile was 0.10, but for the most intense hurricanes it sometimes exceeded 0.5. The power-law exponent and proportion of the faster decay length increased with maximum wind speed and decreased with latitude, whereas the slower decay length decreased with intensity and increased with latitude, consistent with the qualitative observation that more intense hurricanes in lower latitudes usually have more sharply peaked wind profiles.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference18 articles.

1. Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western North Pacific.;Atkinson;Mon. Wea. Rev.,1977

2. An analytic model of the wind and pressure profiles in hurricanes.;Holland;Mon. Wea. Rev.,1980

3. Jarvinen, B. R., C. J.Neumann, and M. A. S.Davis, 1984: A tropical cyclone data tape for the North Atlantic Basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 22, Coral Gables, FL, 21 pp. [Available online at http://www.nhc.noaa.gov/pastall.shtml.].

4. Numerical computation of storm surges with bottom stress.;Jelesnianski;Mon. Wea. Rev.,1967

5. Mean soundings for the West Indies area.;Jordan;J. Meteor.,1958

Cited by 235 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3