Observations of Quasi-Stationary and Shallow Orographic Snow Clouds: Spatial Distributions of Supercooled Liquid Water and Snow Particles

Author:

Kusunoki Kenichi1,Murakami Masataka1,Orikasa Narihiro1,Hoshimoto Mizuho1,Tanaka Yoshinobu1,Yamada Yoshinori2,Mizuno Hakaru3,Hamazu Kyosuke4,Watanabe Hideyuki5

Affiliation:

1. Meteorological Research Institute, Tsukuba, Japan

2. Japan Meteorological Agency, Tokyo, Japan

3. Meteorological College, Kashiwa, Japan

4. Mitsubishi Electric Corporation, Tokyo, Japan

5. Tone River Dams Integrated Control Office, Ministry of Land, Infrastructure, and Transport, Maebashi, Japan

Abstract

On 25 February 1999, due to a winter monsoon after a cyclonic storm, orographic snow clouds formed under conditions of weak cold advection on the western side of the central mountain range of Japan. In this study, the Ka-band Doppler radar and vehicle-mounted microwave radiometer and 2D-Grey imaging probe were used to obtain unique datasets for analyzing the spatial distributions of microphysical structures of the snow clouds at the windward slope. The liquid water path, number concentration of snow particles (0.1–6.4 mm diameter), and precipitation rate were found to be correlated with altitude. The greater concentration of larger particles tended to appear up the slope. The echo top was at about 2.5 km (−30 dBZ), and the relatively strong echo region (>−3 dBZ) appeared at 5 km up the slope and extended nearly parallel to the slope. According to the echo pattern, the ice water path increased with terrain height and reached the maximum intensity at about 14 km up the slope. These observations provide indirect evidence that terrain-induced updrafts lead to the generation and growth of supercooled cloud droplets and indicate that the riming process plays an important role in the growth of snow particles at higher altitudes. In this paper, it is confirmed that the abundance of supercooled liquid water (SLW) during intensified monsoon flow is due to larger water production rates caused by higher vertical velocities induced by topography. Furthermore, it can be shown that small-scale terrains enhance localized updrafts embedded within the larger-scale flow and have noticeable impact on SLW cloud distribution.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3