Impact of wind pattern and complex topography on snow microphysics during International Collaborative Experiment for PyeongChang 2018 Olympic and Paralympic winter games (ICE-POP 2018)

Author:

Kim KwonilORCID,Bang Wonbae,Chang Eun-ChulORCID,Tapiador Francisco J.ORCID,Tsai Chia-LunORCID,Jung Eunsil,Lee Gyuwon

Abstract

Abstract. Snowfall in the northeastern part of South Korea is the result of complex snowfall mechanisms due to a highly contrasting terrain combined with nearby warm waters and three synoptic pressure patterns. All these factors together create unique combinations, whose disentangling can provide new insights into the microphysics of snow on the planet. This study focuses on the impact of wind flow and topography on the microphysics drawing of 20 snowfall events during the ICE-POP 2018 (International Collaborative Experiment for PyeongChang 2018 Olympic and Paralympic winter games) field campaign in the Gangwon region. The vertical structure of precipitation and size distribution characteristics are investigated with collocated MRR (micro rain radar) and PARSIVEL (particle size velocity) disdrometers installed across the mountain range. The results indicate that wind shear and embedded turbulence were the cause of the riming process dominating the mountainous region. As the strength of these processes weakens from the mountainous region to the coastal region, riming became less significant and gave way to aggregation. This study specifically analyzes the microphysical characteristics under three major synoptic patterns: air–sea interaction, cold low, and warm low. Air–sea interaction pattern is characterized by more frequent snowfall and vertically deeper precipitation systems on the windward side, resulting in significant aggregation in the coastal region, with riming featuring as a primary growth mechanism in both mountainous and coastal regions. The cold-low pattern is characterized by a higher snowfall rate and vertically deep systems in the mountainous region, with the precipitation system becoming shallower in the coastal region and strong turbulence being found in the layer below 2 km in the mountainous upstream region (linked with dominant aggregation). The warm-low pattern features the deepest system: precipitation here is enhanced by the seeder–feeder mechanism with two different precipitation systems divided by the transition zone (easterly below and westerly above). Overall, it is found that strong shear and turbulence in the transition zone is a likely reason for the dominant riming process in the mountainous region, with aggregation being important in both mountainous and coastal regions.

Funder

Ministerio de Ciencia e Innovación

Korea Meteorological Administration

National Research Foundation of Korea

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3