A Streamflow and Water Level Forecasting Model for the Ganges, Brahmaputra, and Meghna Rivers with Requisite Simplicity

Author:

Palash Wahid1,Jiang Yudan1,Akanda Ali S.2,Small David L.1,Nozari Amin1,Islam Shafiqul3

Affiliation:

1. Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts

2. Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, Rhode Island

3. Department of Civil and Environmental Engineering, and Water Diplomacy Program, Fletcher School of Law and Diplomacy, Tufts University, Medford, Massachusetts

Abstract

A forecasting lead time of 5–10 days is desired to increase the flood response and preparedness for large river basins. Large uncertainty in observed and forecasted rainfall appears to be a key bottleneck in providing reliable flood forecasting. Significant efforts continue to be devoted to developing mechanistic hydrological models and statistical and satellite-driven methods to increase the forecasting lead time without exploring the functional utility of these complicated methods. This paper examines the utility of a data-based modeling framework with requisite simplicity that identifies key variables and processes and develops ways to track their evolution and performance. Findings suggest that models with requisite simplicity—relying on flow persistence, aggregated upstream rainfall, and travel time—can provide reliable flood forecasts comparable to relatively more complicated methods for up to 10 days lead time for the Ganges, Brahmaputra, and upper Meghna (GBM) gauging locations inside Bangladesh. Forecasting accuracy improves further by including weather-model-generated forecasted rainfall into the forecasting scheme. The use of water level in the model provides equally good forecasting accuracy for these rivers. The findings of the study also suggest that large-scale rainfall patterns captured by the satellites or weather models and their “predictive ability” of future rainfall are useful in a data-driven model to obtain skillful flood forecasts up to 10 days for the GBM basins. Ease of operationalization and reliable forecasting accuracy of the proposed framework is of particular importance for large rivers, where access to upstream gauge-measured rainfall and flow data are limited, and detailed modeling approaches are operationally prohibitive and functionally ineffective.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3