Comparison of Probabilistic Quantitative Precipitation Forecasts from Two Postprocessing Mechanisms

Author:

Zhang Yu1,Wu Limin2,Scheuerer Michael3,Schaake John4,Kongoli Cezar5

Affiliation:

1. National Weather Service, Silver Spring, Maryland

2. Lynker Technologies, and National Weather Service, Silver Spring, Maryland

3. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA Earth System Research Laboratory, Boulder, Colorado

4. Annapolis, Maryland

5. Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract This article compares the skill of medium-range probabilistic quantitative precipitation forecasts (PQPFs) generated via two postprocessing mechanisms: 1) the mixed-type meta-Gaussian distribution (MMGD) model and 2) the censored shifted Gamma distribution (CSGD) model. MMGD derives the PQPF by conditioning on the mean of raw ensemble forecasts. CSGD, on the other hand, is a regression-based mechanism that estimates PQPF from a prescribed distribution by adjusting the climatological distribution according to the mean, spread, and probability of precipitation (POP) of raw ensemble forecasts. Each mechanism is applied to the reforecast of the Global Ensemble Forecast System (GEFS) to yield a postprocessed PQPF over lead times between 24 and 72 h. The outcome of an evaluation experiment over the mid-Atlantic region of the United States indicates that the CSGD approach broadly outperforms the MMGD in terms of both the ensemble mean and the reliability of distribution, although the performance gap tends to be narrow, and at times mixed, at higher precipitation thresholds (>5 mm). Analysis of a rare storm event demonstrates the superior reliability and sharpness of the CSGD PQPF and underscores the issue of overforecasting by the MMGD PQPF. This work suggests that the CSGD’s incorporation of ensemble spread and POP does help enhance its skill, particularly for light forecast amounts, but CSGD’s model structure and its use of optimization in parameter estimation likely play a more determining role in its outperformance.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3