Affiliation:
1. Department of Land, Air and Water Resources, University of California, Davis, Davis, California
Abstract
Abstract
The use of bin or bulk microphysics schemes in model simulations frequently produces large changes in the simulated storm and precipitation characteristics, but it is still unclear which aspects of these schemes give rise to these changes. In this study, supercell simulations using either a bin or a double-moment bulk microphysics scheme are conducted with the Regional Atmospheric Modeling System (RAMS). The two simulations produce very different storm morphologies. An additional simulation is run for each scheme in which the diameter–fall speed relationships for ice hydrometeors are modified to be similar to those used by the other scheme. When fall speed relationships are homogenized, the two parameterization schemes simulate similar storm morphology. Therefore, despite the use of largely dissimilar approaches to parameterizing microphysics, the difference in storm morphology is found to be related to the choice of diameter–fall speed relationships for ice hydrometeors. This result is investigated further to understand why. Higher fall speeds lead to higher mixing ratios of hydrometeors at low levels and thus more melting. Consequently, stronger downdrafts and cold pools exist in the high fall speed storms, and these stronger cold pools lead to storm splitting and the intensification of a left mover. The results point to the importance of hydrometeor fall speed on the evolution of supercells. It is also suggested that caution be used when comparing the response of a cloud model to different classes of microphysics schemes since the assumptions made by the schemes may be more important than the scheme class itself.
Funder
University of California Davis
Publisher
American Meteorological Society
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献