Affiliation:
1. Earth and Environmental Sciences Division/Space and Remote Sensing Group, Los Alamos National Laboratory, Los Alamos, New Mexico
2. Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico
Abstract
Abstract
In this paper, a high-resolution simulation establishing relationships between lightning and eyewall convection during the rapid intensification phase of Rita will be highlighted. The simulation is an attempt to relate simulated lightning activity within strong convective events (CEs) found within the eyewall and general storm properties for a case from which high-fidelity lightning observations are available. Specifically, the analysis focuses on two electrically active eyewall CEs that had properties similar to events observed by the Los Alamos Sferic Array. The numerically simulated CEs were characterized by updraft speeds exceeding 10 m s−1, a relatively more frequent flash rate confined in a layer between 10 and 14 km, and a propagation speed that was about 10 m s−1 less than of the local azimuthal flow in the eyewall. Within an hour of the first CE, the simulated minimum surface pressure dropped by approximately 5 mb. Concurrent with the pulse of vertical motions was a large uptake in lightning activity. This modeled relationship between enhanced vertical motions, a noticeable pressure drop, and heightened lightning activity suggests the utility of using lightning to remotely diagnose future changes in intensity of some tropical cyclones. Furthermore, given that the model can relate lightning activity to latent heat release, this functional relationship, once validated against a derived field produced by dual-Doppler radar data, could be used in the future to initialize eyewall convection via the introduction of latent heat and/or water vapor into a hurricane model.
Publisher
American Meteorological Society
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献