On the Determination of Age of Air Trends from Atmospheric Trace Species

Author:

Garcia Rolando R.1,Randel William J.1,Kinnison Douglas E.1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract Trace chemical species have been used in numerical models to calculate the age of air (AOA), which is a measure of the strength of the mean meridional circulation. The trend in the AOA has also been computed and found to be negative in simulations where greenhouse gases increase with time, which is consistent with the acceleration of the mean meridional circulation calculated under these conditions. This modeling result has been tested recently using observations of SF6, a very long lived species whose atmospheric concentration has increased rapidly over the last half century, and of CO2, which is also very long lived and increasing with time. Surprisingly, the AOA estimated from these gases exhibits no significant trend over the period 1975–2005. Here the Whole Atmosphere Community Climate Model (WACCM) is used to derive estimates of the AOA from SF6 and CO2 over the period 1965–2006. The calculated AOA yields trends that are smaller than the trend derived from a synthetic, linearly growing tracer, even after accounting for the nonlinear growth rates of SF6 and CO2. A simplified global transport model and analytical arguments are used to show that this follows from the variable growth rate of these species. It is also shown that, when AOA is sampled sparsely as in the observations, the resulting trends have very large error bars and are statistically undistinguishable from zero. These results suggest that trends in the AOA are difficult to estimate unambiguously except for well-sampled tracers that increase linearly and uniformly. While such tracers can be defined in numerical models, there are no naturally occurring species that exhibit such idealized behavior.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference24 articles.

1. Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry–climate model simulations.;Austin;J. Atmos. Sci.,2007

2. Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation.;Butchart;Climate Dyn.,2006

3. Age of stratospheric air unchanged within uncertainties over the past 30 years.;Engel;Nat. Geosci.,2009

4. Assessment of temperature, trace species, and ozone in chemistry–climate model simulations of the recent past.;Eyring;J. Geophys. Res.,2006

5. Overview of the new CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and the planned SPARC CCMVal.;Eyring,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3