Climate, Variability, and Climate Sensitivity of “Middle Atmosphere” Chemistry Configurations of the Community Earth System Model Version 2, Whole Atmosphere Community Climate Model Version 6 (CESM2(WACCM6))

Author:

Davis N. A.1ORCID,Visioni D.2ORCID,Garcia R. R.1ORCID,Kinnison D. E.1ORCID,Marsh D. R.3ORCID,Mills M.1ORCID,Richter J. H.3ORCID,Tilmes S.1ORCID,Bardeen C. G.1ORCID,Gettelman A.4ORCID,Glanville A. A.3,MacMartin D. G.2ORCID,Smith A. K.1ORCID,Vitt F.15ORCID

Affiliation:

1. Atmospheric Chemistry and Modeling Observations Laboratory National Center for Atmospheric Research Boulder CO USA

2. Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca NY USA

3. Climate and Global Dynamics Laboratory National Center for Atmospheric Research Boulder CO USA

4. Pacific Northwest National Laboratory Richland WA USA

5. High Altitude Observatory National Center for Atmospheric Research Boulder CO USA

Abstract

AbstractSimulating whole atmosphere dynamics, chemistry, and physics is computationally expensive. It can require high vertical resolution throughout the middle and upper atmosphere, as well as a comprehensive chemistry and aerosol scheme coupled to radiation physics. An unintentional outcome of the development of one of the most sophisticated and hence computationally expensive model configurations is that it often excludes a broad community of users with limited computational resources. Here, we analyze two configurations of the Community Earth System Model Version 2, Whole Atmosphere Community Climate Model Version 6 (CESM2(WACCM6)) with simplified “middle atmosphere” chemistry at nominal 1 and 2° horizontal resolutions. Using observations, a reanalysis, and direct model comparisons, we find that these configurations generally reproduce the climate, variability, and climate sensitivity of the 1° nominal horizontal resolution configuration with comprehensive chemistry. While the background stratospheric aerosol optical depth is elevated in the middle atmosphere configurations as compared to the comprehensive chemistry configuration, it is comparable among all configurations during volcanic eruptions. For any purposes other than those needing an accurate representation of tropospheric organic chemistry and secondary organic aerosols, these simplified chemistry configurations deliver reliable simulations of the whole atmosphere that require 35% and 86% fewer computational resources at nominal 1 and 2° horizontal resolution, respectively.

Funder

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3