On the Identification of Nonstationary Factor Models and Their Application to Atmospheric Data Analysis

Author:

Horenko Illia1

Affiliation:

1. Institute of Mathematics, Free University of Berlin, Berlin, Germany

Abstract

Abstract A numerical framework for data-based identification of nonstationary linear factor models is presented. The approach is based on the extension of the recently developed method for identification of persistent dynamical phases in multidimensional time series, permitting the identification of discontinuous temporal changes in underlying model parameters. The finite element method (FEM) discretization of the resulting variational functional is applied to reduce the dimensionality of the resulting problem and to construct the numerical iterative algorithm. The presented method results in the sparse sequential linear minimization problem with linear constrains. The performance of the framework is demonstrated for the following two application examples: (i) in the context of subgrid-scale parameterization for the Lorenz model with external forcing and (ii) in an analysis of climate impact factors acting on the blocking events in the upper troposphere. The importance of accounting for the nonstationarity issue is demonstrated in the second application example: modeling the 40-yr ECMWF Re-Analysis (ERA-40) geopotential time series via a single best stochastic model with time-independent coefficients leads to the conclusion that all of the considered external factors are found to be statistically insignificant, whereas considering the nonstationary model (which is demonstrated to be more appropriate in the sense of information theory) identified by the methodology presented in the paper results in identification of statistically significant external impact factor influences.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference34 articles.

1. Pattern Recognition with Fuzzy Objective Function Algorithms.;Bezdek,1981

2. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics.;Braess,2007

3. Introduction to Time Series and Forecasting.;Brockwell,2002

4. Tikhonov regularization and the L-curve for large discrete ill-posed problems.;Calvetti;J. Comput. Appl. Math.,2000

5. Bootstrap Methods: A Guide for Practitioners and Researchers.;Chernik,2007

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3