A stochastic stability equation for unsteady turbulence in the stable boundary layer

Author:

Boyko Vyacheslav1ORCID,Vercauteren Nikki2ORCID

Affiliation:

1. Department of Mathematics and Computer Sciences Freie Universität Berlin Berlin Germany

2. Department of Geosciences University of Oslo Oslo Norway

Abstract

AbstractThe atmospheric boundary layer is particularly challenging to model in conditions of stable stratification, which can be associated with intermittent or unsteady turbulence. We develop a modelling approach to represent unsteady mixing possibly associated with turbulence intermittency and with unresolved fluid motions, called sub‐mesoscale motions. This approach introduces a stochastic parametrisation by randomising the stability correction used in the classical Monin–Obhukov similarity theory. This randomisation alters the turbulent momentum diffusion and accounts for sporadic events that cause unsteady mixing. A data‐driven stability correction equation is developed, parametrised, and validated with the goal to be modular and easily combined with existing Reynolds‐averaged Navier–Stokes models. Field measurements are processed using a statistical model‐based clustering technique, which simultaneously models and classifies the non‐stationary stable boundary layer. The stochastic stability correction obtained includes the effect of the static stability of the flow on the resolved flow variables, and additionally includes random perturbations that account for localised intermittent bursts of turbulence. The approach is general and effectively accounts for the stochastic mixing effects of unresolved processes of possibly unknown origin.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flux‐gradient relations and their dependence on turbulence anisotropy;Quarterly Journal of the Royal Meteorological Society;2024-05-26

2. Simulating the Unsteady Stable Boundary Layer With a Stochastic Stability Equation;Journal of Geophysical Research: Atmospheres;2024-02-27

3. Sensitivity of the polar boundary layer to transient phenomena;Nonlinear Processes in Geophysics;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3