Evidence of Decadal Climate Prediction Skill Resulting from Changes in Anthropogenic Forcing

Author:

Lee Terry C. K.1,Zwiers Francis W.2,Zhang Xuebin3,Tsao Min1

Affiliation:

1. Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada

2. Canadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment Canada, University of Victoria, Victoria, British Columbia, Canada

3. Climate Monitoring and Data Interpretation Division, Climate Research Division, Environment Canada, Downsview, Ontario, Canada

Abstract

Abstract It is argued that simulations of the twentieth century performed with coupled global climate models with specified historical changes in external radiative forcing can be interpreted as climate hindcasts. A simple Bayesian method for postprocessing such simulations is described, which produces probabilistic hindcasts of interdecadal temperature changes on large spatial scales. Hindcasts produced for the last two decades of the twentieth century are shown to be skillful. The suggestion that skillful decadal forecasts can be produced on large regional scales by exploiting the response to anthropogenic forcing provides additional evidence that anthropogenic change in the composition of the atmosphere has influenced the climate. In the absence of large negative volcanic forcing on the climate system (which cannot presently be forecast), it is predicted that the global mean temperature for the decade 2000–09 will lie above the 1970–99 normal with a probability of 0.94. The global mean temperature anomaly for this decade relative to 1970–99 is predicted to be 0.35°C with a 5%–95% confidence range of 0.21°–0.48°C.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3